Towards a Unified View on Visual Parameter-Efficient Transfer LearningDownload PDF

Published: 01 Feb 2023, Last Modified: 12 Mar 2024Submitted to ICLR 2023Readers: Everyone
Keywords: Parameter Efficient, Transfer Learning, Domain Adaption
TL;DR: This paper investigates the positional importance of trainable parameter for adapting a large model to downstream tasks.
Abstract: Since the release of various large-scale natural language processing (NLP) pre-trained models, parameter efficient transfer learning (PETL) has become a popular paradigm capable of achieving impressive performance on various downstream tasks. PETL aims at making good use of the representation knowledge in the pre-trained large models by fine-tuning a small number of parameters. Recently, it has also attracted increasing attention to developing various PETL techniques for vision tasks. Popular PETL techniques such as Prompt Tuning and Adapter have been proposed for high-level visual downstream tasks such as image classification and video recognition. However, Prefix-tuning remains under-explored for vision tasks. In this work, we intend to adapt large video-based models to downstream tasks with a good parameter-accuracy trade-off. Towards this goal, we propose a framework with a unified view of PETL called visual-PETL (V-PETL) to investigate the effects of different PETL techniques, data scales of downstream domains, positions of trainable parameters, and other aspects affecting the trade-off. Specifically, we analyze the positional importance of trainable parameters and the differences between NLP and vision tasks in terms of data structures and pre-training mechanisms while implementing various PETL techniques, especially for the under-explored prefix-tuning technique. Based on a comprehensive understanding of the differences between NLP and video data, we propose a new variation of prefix-tuning module called parallel attention (PATT) for video-based downstream tasks. An extensive empirical analysis on two video datasets via different frozen backbones has been carried and the findings show that the proposed PATT can effectively contribute to other PETL techniques. An effective scheme Swin-BAPAT derived from the proposed V-PETL framework achieves significantly better performance than the state-of-the-art AdaptFormer-Swin with slightly more parameters and outperforms full-tuning with far less parameters.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/arxiv:2210.00788/code)
19 Replies

Loading