Keywords: imbalance classification, foundational model, fine-tuning, model merging
TL;DR: LT-Soups merges CLIP models fine-tuned on balanced subsets and retrains the classifier on the full dataset, achieving SOTA head/tail accuracy trade-offs across five benchmarks.
Abstract: Real-world datasets typically exhibit long-tailed (LT) distributions, where a few head classes dominate and many tail classes are severely underrepresented. While recent work shows that parameter-efficient fine-tuning (PEFT) methods like LoRA and AdaptFormer preserve tail-class performance on foundation models such as CLIP, we find that they do so at the cost of head-class accuracy. We identify the head-tail ratio, the proportion of head to tail classes, as a crucial but overlooked factor influencing this trade-off. Through controlled experiments on CIFAR100 with varying imbalance ratio ($\rho$) and head-tail ratio ($\eta$), we show that PEFT excels in tail-heavy scenarios but degrades in more balanced and head-heavy distributions. To overcome these limitations, we propose LT-Soups, a two-stage model soups framework designed to generalize across diverse LT regimes. In the first stage, LT-Soups averages models fine-tuned on balanced subsets to reduce head-class bias; in the second, it fine-tunes only the classifier on the full dataset to restore head-class accuracy. Experiments across six benchmark datasets show that LT-Soups achieves superior trade-offs compared to both PEFT and traditional model soups across a wide range of imbalance regimes.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 6879
Loading