Unlearning vs. Obfuscation: Are We Truly Removing Knowledge?

ACL ARR 2025 May Submission820 Authors

15 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Unlearning has emerged as a critical capability for large language models (LLMs) to support data privacy, regulatory compliance, and ethical AI deployment. Recent techniques often rely on obfuscation by injecting incorrect or irrelevant information to suppress knowledge. Such methods effectively constitute knowledge addition rather than true removal, often leaving models vulnerable to probing. In this paper, we formally distinguish unlearning from obfuscation and introduce a probing-based evaluation framework to assess whether existing approaches genuinely remove targeted information. Moreover, we propose DF-MCQ, a novel unlearning method that flattens the model predictive distribution over automatically generated multiple-choice questions using KL-divergence, effectively removing knowledge about target individuals and triggering appropriate refusal behaviour. Experimental results demonstrate that DF-MCQ achieves unlearning with over 90% refusal rate and a random choice-level uncertainty that is much higher than obfuscation on probing questions.
Paper Type: Long
Research Area: Interpretability and Analysis of Models for NLP
Research Area Keywords: probing, uncertainty , knowledge tracing
Contribution Types: Model analysis & interpretability, NLP engineering experiment
Languages Studied: English
Keywords: unlearning, large language model
Submission Number: 820
Loading