ReLayout: Integrating Relation Reasoning for Content-aware Layout Generation with Multi-modal Large Language Models

ICLR 2026 Conference Submission6405 Authors

16 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Layout Generation, Multi-modal Large Language Models, Relation
Abstract: Content-aware layout aims to arrange design elements appropriately on a given canvas to convey information effectively. Recently, the trend for this task has been to leverage large language models (LLMs) to generate layouts automatically, achieving remarkable performance. However, existing LLM-based methods fail to adequately interpret spatial relationships among visual themes and design elements, leading to structural and diverse problems in layout generation. To address this issue, we introduce ReLayout, a novel method that leverages relation-CoT to generate more reasonable and aesthetically coherent layouts by fundamentally originating from design concepts. Specifically, we enhance layout annotations by introducing explicit relation definitions, such as region, salient, and margin between elements, with the goal of decomposing the layout into smaller, structured, and recursive layouts, thereby enabling the generation of more structured layouts. Furthermore, based on these defined relationships, we introduce a layout prototype rebalance sampler, which defines layout prototype features across three dimensions and quantifies distinct layout styles. This sampler addresses uniformity issues in generation that arise from data bias in the prototype distribution balance process. Extensive experimental results verify that ReLayout outperforms baselines and can generate structural and diverse layouts that are more aligned with human aesthetics and more explainable.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 6405
Loading