Intraclass clustering: an implicit learning ability that regularizes DNNsDownload PDF

Sep 28, 2020 (edited Feb 24, 2021)ICLR 2021 PosterReaders: Everyone
  • Keywords: deep learning, generalization, implicit regularization
  • Abstract: Several works have shown that the regularization mechanisms underlying deep neural networks' generalization performances are still poorly understood. In this paper, we hypothesize that deep neural networks are regularized through their ability to extract meaningful clusters among the samples of a class. This constitutes an implicit form of regularization, as no explicit training mechanisms or supervision target such behaviour. To support our hypothesis, we design four different measures of intraclass clustering, based on the neuron- and layer-level representations of the training data. We then show that these measures constitute accurate predictors of generalization performance across variations of a large set of hyperparameters (learning rate, batch size, optimizer, weight decay, dropout rate, data augmentation, network depth and width).
  • Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
  • One-sentence Summary: This paper provides empirical evidence that deep neural networks are implicitly regularized through their ability to extract meaningful clusters among the samples of a class.
  • Supplementary Material: zip
13 Replies

Loading