Scalable Diffusion for Materials Generation

Published: 27 Oct 2023, Last Modified: 11 Dec 2023AI4Mat-2023 SpotlightEveryoneRevisionsBibTeX
Submission Track: Papers
Submission Category: AI-Guided Design
Keywords: Generative models for materials, diffusion models, density function theory
TL;DR: We scale up diffusion models on a novel unified representation of crystal structures and generate orders of magnitude more novel stable materials verified by Density Function Theory calculations compared to previous generative modeling approaches.
Abstract: ​​​​Generative models trained on internet-scale data are capable of generating novel and realistic texts, images, and videos. A natural next question is whether these models can advance science, for example by generating novel stable materials. Traditionally, models with explicit structures (e.g., graphs) have been used in modeling structural relationships in scientific data (e.g., atoms and bonds in crystals), but generating structures can be difficult to scale to large and complex systems. Another challenge in generating materials is the mismatch between standard generative modeling metrics and downstream applications. For instance, common metrics such as the reconstruction error do not correlate well with the downstream goal of discovering novel stable materials. In this work, we tackle the scalability challenge by developing a unified crystal representation that can represent any crystal structure (UniMat), followed by training a diffusion probabilistic model on these UniMat representations. Our empirical results suggest that despite the lack of explicit structure modeling, UniMat can generate high fidelity crystal structures from larger and more complex chemical systems, outperforming previous graph-based approaches under various generative modeling metrics. To better connect the generation quality of materials to downstream applications, such as discovering novel stable materials, we propose additional metrics for evaluating generative models of materials, including per-composition formation energy and stability with respect to convex hulls through decomposition energy from Density Function Theory (DFT). Lastly, we show that conditional generation with UniMat can scale to previously established crystal datasets with up to millions of crystals structures, outperforming random structure search (the current leading method for structure discovery) in discovering new stable materials.
Digital Discovery Special Issue: Yes
Submission Number: 26
Loading