Keywords: Data Poisoning, Certified Robustness, Diffusion Denoising
TL;DR: We propose diffusion denoising as a certified defense against clean-label poisoning, offering the highest utility with the same level of guarantee and deployment simplicity.
Abstract: We present a certified defense to clean-label poisoning attacks. These attacks work by injecting a small number of poisoning samples (e.g., 1%) that contain $\ell_2$-norm bounded adversarial perturbations into the training data to induce a targeted misclassification of a test-time input. Inspired by the adversarial robustness achieved by \emph{denoised smoothing}, we show how an off-the-shelf diffusion model can sanitize the tampered training data. We extensively test our defense against seven clean-label poisoning attacks and reduce their attack success to 0-16% with only a negligible drop in the test time accuracy. We compare our defense with existing countermeasures against clean-label poisoning, showing that the defense reduces the attack success the most and offers the best model utility. Our results highlight the need for future work on developing stronger clean-label attacks and using our certified yet practical defense as a strong baseline to evaluate these attacks.
Supplementary Material: zip
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 10994
Loading