Beyond Sequential Context: Navigating Non-linear Flow of Multi-turn Dialogues with Dynamic Context Tree
Keywords: multi-turn dialogue, context management, LLM, benchmark
Abstract: Large Language Models demonstrate outstanding performance in many language tasks but still face fundamental challenges in managing the non-linear flow of human conversation. The prevalent approach of treating dialogue history as a flat, linear sequence is misaligned with the intrinsically hierarchical and branching structure of natural discourse, leading to inefficient context utilization and a loss of coherence during extended interactions involving topic shifts or instruction refinements. To address this limitation, we introduce Context-Agent, a novel framework that models multi-turn dialogue history as a dynamic tree structure. This approach mirrors the inherent non-linearity of conversation, enabling the model to maintain and navigate multiple dialogue branches corresponding to different topics. Furthermore, to facilitate robust evaluation, we introduce the Non-linear Task Multi-turn Dialogue (NTM) benchmark, specifically designed to assess model performance in long-horizon, non-linear scenarios. Our experiments demonstrate that Context-Agent enhances task completion rates and improves token efficiency across various LLMs, underscoring the value of structured context management for complex, dynamic dialogues.
Supplementary Material: zip
Primary Area: foundation or frontier models, including LLMs
Submission Number: 18296
Loading