Model-based RL as a Minimalist Approach to Horizon-Free and Second-Order Bounds

Published: 22 Jan 2025, Last Modified: 28 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: reinforcement learning theory, model-based reinforcement learning
Abstract: Learning a transition model via Maximum Likelihood Estimation (MLE) followed by planning inside the learned model is perhaps the most standard and simplest Model-based Reinforcement Learning (RL) framework. In this work, we show that such a simple Model-based RL scheme, when equipped with optimistic and pessimistic planning procedures, achieves strong regret and sample complexity bounds in online and offline RL settings. Particularly, we demonstrate that under the conditions where the trajectory-wise reward is normalized between zero and one and the transition is time-homogenous, it achieves nearly horizon-free and second-order bounds.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11438
Loading