Hierarchical Meta Reinforcement Learning for Multi-Task EnvironmentsDownload PDF

28 Sept 2020 (modified: 05 May 2023)ICLR 2021 Conference Blind SubmissionReaders: Everyone
Keywords: Reinforcement Learning, Multi-task, Hierarchical, Meta Learning
Abstract: Deep reinforcement learning algorithms aim to achieve human-level intelligence by solving practical decisions-making problems, which are often composed of multiple sub-tasks. Complex and subtle relationships between sub-tasks make traditional methods hard to give a promising solution. We implement a first-person shooting environment with random spatial structures to illustrate a typical representative of this kind. A desirable agent should be capable of balancing between different sub-tasks: navigation to find enemies and shooting to kill them. To address the problem brought by the environment, we propose a Meta Soft Hierarchical reinforcement learning framework (MeSH), in which each low-level sub-policy focuses on a specific sub-task respectively and high-level policy automatically learns to utilize low-level sub-policies through meta-gradients. The proposed framework is able to disentangle multiple sub-tasks and discover proper low-level policies under different situations. The effectiveness and efficiency of the framework are shown by a series of comparison experiments. Both environment and algorithm code will be provided for open source to encourage further research.
One-sentence Summary: A new multi-task environment & a hierarchical meta reinforcement learning framework
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Reviewed Version (pdf): https://openreview.net/references/pdf?id=u4qLSy_GDI
5 Replies

Loading