Toggle navigation
OpenReview
.net
Login
×
Go to
AutoML 2025 Non-Archival Content Track
homepage
Data-Efficient Ranking of Recommendation Models
Berivan Isik
,
Matthew Fahrbach
,
Dima Kuzmin
,
Nicolas Mayoraz
,
Emil Praun
,
Steffen Rendle
,
Raghavendra Vasudeva
Published: 29 Aug 2025, Last Modified: 29 Aug 2025
AutoML 2025 Non-Archival Content Track
Everyone
Revisions
BibTeX
CC BY 4.0
Submission Type:
Short paper
Tldr:
We reduce the cost of hyperparameter search of online recommendation models trained on non-stationary data by 10 times.
Submission Number:
32
Loading