DynamicKV: Task-Aware Adaptive KV Cache Compression for Long Context LLMs

ICLR 2025 Conference Submission13593 Authors

28 Sept 2024 (modified: 13 Oct 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Model, Efficient Inference, Key-Value Cache Compression
TL;DR: We introduce a task-aware adaptive KV cache compression method, which enables Large Language Models to compress KV cache extremely during inference while maintaining high performance.
Abstract: Efficiently managing the KV cache in Large Language Models (LLMs) is a critical challenge for long-context processing tasks such as retrieval-augmented generation (RAG), long text summarization, and multi-document analysis. Extending the context length substantially increases the KV cache size, leading to excessive memory consumption. Existing KV cache compression methods enforce a fixed pattern, neglecting task-specific characteristics, which hampers the effective retention of essential information while discarding less important tokens. In this paper, we introduce a novel Task-Aware KV cache mechanism that dynamically adjusts the KV cache size across different layers based on the characteristics of the tasks. Our approach builds on the significant observation of distinct activation patterns across layers in various tasks, which highlights the need for adaptive strategies tailored to each task's unique demands. Based on this insight, we propose DynamicKV, a method that dynamically optimizes token retention by adjusting the number of tokens retained at each layer, adapting to the specific task. DynamicKV establishes global and per-layer maximum KV cache budgets, temporarily retaining the maximum budget for the current layer, and periodically updating the KV cache sizes of all preceding layers during inference. Our method demonstrates exceptional performance on the LongBench dataset, retaining only 1.7\% of the KV cache while preserving 90\%, 87\%, 78\%, and 83\% of the original accuracy for LlaMA-3-8B-Instruct, Mistral-7B-Instruct-v0.2, Qwen2-7B-Instruct, and InternLM-2.5-7B-Chat-1M, respectively. When the retained KV cache size is increased to 6.9\%, the performance becomes nearly indistinguishable from that without any KV cache compression. Notably, even under extreme compression (0.9\%), DynamicKV surpasses state-of-the-art (SOTA) methods by 11\% in the Needle-in-a-Haystack test using Mistral-7B-Instruct-v0.2. The code will be released to the public.
Primary Area: foundation or frontier models, including LLMs
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 13593
Loading