GFlowNets and variational inferenceDownload PDF

Published: 01 Feb 2023, Last Modified: 08 Sept 2024ICLR 2023 posterReaders: Everyone
Keywords: variational inference, GFlowNets, probabilistic modeling, weighted importance sampling
TL;DR: We theoretically and empirically compare and contrast GFlowNets with hierarchical variational inference.
Abstract: This paper builds bridges between two families of probabilistic algorithms: (hierarchical) variational inference (VI), which is typically used to model distributions over continuous spaces, and generative flow networks (GFlowNets), which have been used for distributions over discrete structures such as graphs. We demonstrate that, in certain cases, VI algorithms are equivalent to special cases of GFlowNets in the sense of equality of expected gradients of their learning objectives. We then point out the differences between the two families and show how these differences emerge experimentally. Notably, GFlowNets, which borrow ideas from reinforcement learning, are more amenable than VI to off-policy training without the cost of high gradient variance induced by importance sampling. We argue that this property of GFlowNets can provide advantages for capturing diversity in multimodal target distributions. Code: https://github.com/GFNOrg/GFN_vs_HVI.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Probabilistic Methods (eg, variational inference, causal inference, Gaussian processes)
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 1 code implementation](https://www.catalyzex.com/paper/gflownets-and-variational-inference/code)
12 Replies

Loading