Keywords: Classification, Imbalanced data set, SMOTE
Abstract: Synthetic Minority Oversampling Technique (SMOTE) is a common rebalancing strategy for handling imbalanced tabular data sets. However, few works analyze SMOTE theoretically. In this paper, we prove that SMOTE (with default parameter) tends to copy the original minority samples asymptotically. We also prove that SMOTE exhibits boundary artifacts, thus justifying existing SMOTE variants. Then we introduce two new SMOTE-related strategies, and compare them with state-of-the-art rebalancing procedures. Surprisingly, for most data sets, we observe that applying no rebalancing strategy is competitive in terms of predictive performances, with tuned random forests, logistic regression or LightGBM. For highly imbalanced data sets, our new methods, named CV-SMOTE and Multivariate Gaussian SMOTE, are competitive. Besides, our analysis sheds some lights on the behavior of common rebalancing strategies, when used in conjunction with random forests.
Primary Area: other topics in machine learning (i.e., none of the above)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 6639
Loading