Adversarial Diversity in HanabiDownload PDF

Published: 01 Feb 2023, Last Modified: 02 Mar 2023ICLR 2023 notable top 25%Readers: Everyone
Keywords: coordination, diversity, multi-agent reinforcement learning
TL;DR: We produce meaningfully diverse and reasonable joint policies using off-belief learning and adversarial reward shaping.
Abstract: Many Dec-POMDPs admit a qualitatively diverse set of ''reasonable'' joint policies, where reasonableness is indicated by symmetry equivariance, non-sabotaging behaviour and the graceful degradation of performance when paired with ad-hoc partners. Some of the work in diversity literature is concerned with generating these policies. Unfortunately, existing methods fail to produce teams of agents that are simultaneously diverse, high performing, and reasonable. In this work, we propose a novel approach, adversarial diversity (ADVERSITY), which is designed for turn-based Dec-POMDPs with public actions. ADVERSITY relies on off-belief learning to encourage reasonableness and skill, and on ''repulsive'' fictitious transitions to encourage diversity. We use this approach to generate new agents with distinct but reasonable play styles for the card game Hanabi and open-source our agents to be used for future research on (ad-hoc) coordination.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Reinforcement Learning (eg, decision and control, planning, hierarchical RL, robotics)
Supplementary Material: zip
16 Replies