Learning with Mixture of Prototypes for Out-of-Distribution Detection

Published: 16 Jan 2024, Last Modified: 12 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: out-of-distribution detection, prototypical learning, hyperspherical embedding
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Out-of-distribution (OOD) detection aims to detect testing samples far away from the in-distribution (ID) training data, which is crucial for the safe deployment of machine learning models in the real world. Distance-based OOD detection methods have emerged with enhanced deep representation learning. They identify unseen OOD samples by measuring their distances from ID class centroids or prototypes. However, existing approaches learn the representation relying on oversimplified data assumptions, e.g. modeling ID data of each class with one centroid class prototype or using loss functions not designed for OOD detection, which overlook the natural diversities within the data. Naively enforcing data samples of each class to be compact around only one prototype leads to inadequate modeling of realistic data and limited performance. To tackle these issues, we propose PrototypicAl Learning with a Mixture of prototypes (PALM) that models each class with multiple prototypes to capture the sample diversities, which learns more faithful and compact samples embeddings for enhanching OOD detection. Our method automatically identifies and dynamically updates prototypes, assigning each sample to a subset of prototypes via reciprocal neighbor soft assignment weights. To learn embeddings with multiple prototypes, PALM optimizes a maximum likelihood estimation (MLE) loss to encourage the sample embeddings to compact around the associated prototypes, as well as a contrastive loss on all prototypes to enhance intra-class compactness and inter-class discrimination at the prototype level. Compared to previous methods with prototypes, the proposed mixture prototype modeling of PALM promotes the representations of each ID class to be more compact and separable from others and the unseen OOD samples, resulting in more reliable OOD detection. Moreover, the automatic estimation of prototypes enables our approach to be extended to the challenging OOD detection task with unlabelled ID data. Extensive experiments demonstrate the superiority of PALM over previous methods, achieving state-of-the-art average AUROC performance of 93.82 on the challenging CIFAR-100 benchmark.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: societal considerations including fairness, safety, privacy
Submission Number: 1050
Loading