Normal-Abnormal Decoupling Memory for Medical Report Generation

Published: 07 Oct 2023, Last Modified: 01 Dec 2023EMNLP 2023 FindingsEveryoneRevisionsBibTeX
Submission Type: Regular Long Paper
Submission Track: Language Grounding to Vision, Robotics and Beyond
Submission Track 2: NLP Applications
Keywords: Medical Report Generation, Normal-Abnormal Decoupling, Semantic Extraction, Abnormal Mode Memory
TL;DR: We propose a normal-abnormal semantic decoupling network based on abnormal pattern memory, which optimizes visual extraction through abnormal semantics and alleviates the noise problem in medical reports.
Abstract: The automatic generation of medical reports plays a crucial role in clinical automation. In contrast to natural images, radiological images exhibit a high degree of similarity, while medical data are prone to data bias and complex noise, posing challenges for existing methods in capturing nuanced visual information. To address these challenges, we introduce a novel normal-abnormal semantic decoupling network that utilizes abnormal pattern memory. Different from directly optimizing the network using medical reports, we optimize visual extraction through the extraction of abnormal semantics from the reports. Moreover, we independently learn normal semantics based on abnormal semantics, ensuring that the optimization of the visual network remains unaffected by normal semantics learning. Then, we divided the words in the report into four parts: normal/abnormal sentences and normal/abnormal semantics, optimizing the network with distinct weights for each partition. The two semantic components, along with visual information, are seamlessly integrated to facilitate the generation of precise and coherent reports. This approach mitigates the impact of noisy normal semantics and reports. Moreover, we develop a novel encoder for abnormal pattern memory, which improves the network's ability to detect anomalies by capturing and embedding the abnormal patterns of images in the visual encoder. This approach demonstrates excellent performance on the benchmark MIMIC-CXR, surpassing the current state-of-the-art methods.
Submission Number: 53
Loading