Understand Clean Generalization and Robust Overfitting in Adversarial Training from Two Theoretical Views: Representation Complexity and Training Dynamics

25 Sept 2024 (modified: 05 Feb 2025)Submitted to ICLR 2025EveryoneRevisionsBibTeXCC BY 4.0
Keywords: deep learning theory, adversarial training, clean generalization and robust overfitting, representation complexity, training dynamics, feature learning theory
TL;DR: We provide a theoretical understanding why clean generalization and robust overfitting both happen in adversarial training.
Abstract: Similar to surprising performance in the standard deep learning, deep nets trained by adversarial training also generalize well for unseen clean data (natural data). However, despite adversarial training can achieve low robust training error, there exists a significant robust generalization gap. We call this phenomenon the Clean Generalization and Robust Overfitting (CGRO). In this work, we study the CGRO phenomenon in adversarial training from two views: representation complexity and training dynamics. Specifically, we consider a binary classification setting with $N$ separated training data points. First, we prove that, based on the assumption that we assume there is $\operatorname{poly}(D)$-size clean classifier (where $D$ is the data dimension), ReLU net with only $O(N D)$ extra parameters is able to leverages robust memorization to achieve the CGRO, while robust classifier still requires exponential representation complexity in worst case. Next, we focus on a structured-data case to analyze training dynamics, where we train a two-layer convolutional network with $O(N D)$ width against adversarial perturbation. We then show that a three-stage phase transition occurs during learning process and the network provably converges to robust memorization regime, which thereby results in the CGRO. Besides, we also empirically verify our theoretical analysis by experiments in real-image recognition datasets.
Primary Area: learning theory
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4598
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview