PINF: Continuous Normalizing Flows for Physics-Constrained Deep Learning

21 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Continuous normalizing flows, Fokker-Planck equations, ordinary differential equations, normalization constraint
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: The normalization constraint on probability density poses a significant challenge for solving the Fokker-Planck equation. Normalizing Flow, an invertible generative model leverages the change of variables formula to ensure probability density conservation and enable the learning of complex data distributions. In this paper, we introduce Physics-Informed Normalizing Flows (PINF), a novel extension of continuous normalizing flows, incorporating diffusion through the method of characteristics. Our method, which is mesh-free and causality-free, can efficiently solve high dimensional time-dependent and steady-state Fokker-Planck equations.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 3627
Loading