GroundingGPT: Language Enhanced Multi-modal Grounding ModelDownload PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: Multi-modal large language models (MLLMs) have demonstrated remarkable performance across various tasks. However, these models often prioritize capturing global information and overlook the importance of perceiving local information. This limitation hinders their ability to effectively understand fine-grained details and handle grounding tasks that necessitate nuanced comprehension. Although some recent works have made strides in this, they have primarily focused on single-modality inputs. Therefore, we propose GroundingGPT, an end-to-end language enhanced multi-modal grounding model. It is designed to perform fine-grained grounding tasks for three modalities: image, video and audio. To enhance the model’s performance, we adopt a coarse-to-fine training strategy, utilizing a three-stage training approach to progressively enhance the model’s semantic awareness and fine-grained understanding capabilities. Additionally, we employ a diversified stage-specific dataset construction pipeline, developing a multi-modal, multi-granularity dataset tailored for training the model in different stages. Extensive experiments conducted on multiple multi-modal benchmarks demonstrate that our model achieves an impressive fine-grained understanding of multi-modal inputs on grounding tasks while maintaining or improving its global comprehension capabilities. We will make the code, dataset, and model publicly available to facilitate further research in this area.
Paper Type: long
Research Area: Multimodality and Language Grounding to Vision, Robotics and Beyond
Contribution Types: NLP engineering experiment, Publicly available software and/or pre-trained models, Data resources
Languages Studied: English
0 Replies

Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview