Image Hijacks: Adversarial Images can Control Generative Models at Runtime

19 Sept 2023 (modified: 11 Feb 2024)Submitted to ICLR 2024EveryoneRevisionsBibTeX
Primary Area: societal considerations including fairness, safety, privacy
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: adversarial attacks, language models, vision language models, foundation models, security, jailbreaks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: We discover image hijacks, adversarial images that control generative vision language models at runtime.
Abstract: Are foundation models secure from malicious actors? In this work, we focus on the image input to a vision-language model (VLM). We discover image hijacks, adversarial images that control generative models at runtime. We introduce Behaviour Matching, a general method for creating image hijacks, and we use it to explore three types of attacks. Specific string attacks generate arbitrary output of the adversary's choice. Leak context attacks leak information from the context window into the output. Jailbreak attacks circumvent a model's safety training. We study these attacks against LLaVA, a state-of-the-art VLM based on CLIP and LLaMA-2, and find that all our attack types have above a 90% success rate. Moreover, our attacks are automated and require only small image perturbations. These findings raise serious concerns about the security of foundation models. If image hijacks are as difficult to defend against as adversarial examples in CIFAR-10, then it might be many years before a solution is found -- if one even exists.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 2001
Loading