Enhancing Multilingual LLM Pretraining with Model-Based Data Selection

Published: 18 Sept 2025, Last Modified: 30 Oct 2025NeurIPS 2025 Datasets and Benchmarks Track posterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: multilingual LLM pretraining dataset, web-scale data curation, model-based data selection
Abstract: Dataset curation has become a basis for strong large language model (LLM) performance. While various rule-based filtering heuristics exist for English and multilingual datasets, model-based filtering techniques have primarily focused on English. To address the disparity stemming from limited research on non-English languages, we develop a model-based filtering framework for multilingual datasets that aims to identify a diverse set of structured and knowledge-rich samples. Our approach emphasizes transparency, simplicity, and efficiency, leveraging Transformer- and FastText-based classifiers to ensure the broad accessibility of our technique and data. We conduct comprehensive ablation studies on the FineWeb-2 web crawl dataset across diverse language families, scripts, and resource availability to demonstrate the effectiveness of our method. Training a 1B-parameter Llama model for 70B and 119B tokens, our approach can match the baseline MMLU score with as little as 15\% of the training tokens, while also improving across other benchmarks and mitigating the curse of multilinguality. These findings provide strong evidence for the generalizability of our approach to other languages. As a result, we extend our framework to 20 languages for which we release the refined pretraining datasets.
Croissant File: json
Dataset URL: https://huggingface.co/datasets/epfml/FineWeb2-HQ
Code URL: https://github.com/epfml/fineweb2-hq
Primary Area: Datasets & Benchmarks for applications in language modeling and vision language modeling
Submission Number: 814
Loading