Information Preserving Line Search via Bayesian Optimization

Published: 04 Apr 2025, Last Modified: 09 Jun 2025LION19 2025EveryoneRevisionsBibTeXCC BY 4.0
Confirmation: I have read and agree with the workshop's policy on behalf of myself and my co-authors.
Tracks: Main Track
Keywords: Nonlinear Optimization, Line Search, Regression, Bayesian Optimization, Gaussian Process
Abstract: Line search is a fundamental part of iterative optimization methods for unconstrained and bound-constrained optimization problems to determine suitable step lengths that provide sufficient improvement in each iteration. Traditional line search methods are based on iterative interval refinement, where valuable information about function value and gradient is discarded in each iteration. We propose a line search method via Bayesian optimization, preserving and utilizing otherwise discarded information to improve step-length choices. Our approach is guaranteed to converge and shows superior performance compared to state-of-the-art methods based on empirical tests on the challenging unconstrained and bound-constrained optimization problems from the CUTEst test set.
Submission Number: 15
Loading