Diffusion-DFL: Decision-focused Diffusion Models for Stochastic Optimization

ICLR 2026 Conference Submission14046 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Decisoin-focused learning, stochastic optimization, diffusion models
Abstract: Decision-focused learning (DFL) integrates predictive modeling and optimization by training predictors to optimize the downstream decision target rather than merely minimizing prediction error. To date, existing DFL methods typically rely on deterministic point predictions, which are often insufficient to capture the intrinsic stochasticity of real-world environments. To address this challenge, we propose the first diffusion-based DFL approach, which trains a diffusion model to represent the distribution of uncertain parameters and optimizes the decision by solving a stochastic optimization with samples drawn from the diffusion model. Our contributions are twofold. First, we formulate diffusion DFL using the reparameterization trick, enabling end-to-end training through diffusion. While effective, it is memory and compute-intensive due to the need to differentiate through the diffusion sampling process. Second, we propose a lightweight score function estimator that uses only several forward diffusion passes and avoids backpropagation through the sampling. This follows from our results that backpropagating through stochastic optimization can be approximated by a weighted score function formulation. We empirically show that our diffusion DFL approach consistently outperforms strong baselines in decision quality. The source code for all experiments is available [here](https://anonymous.4open.science/r/e2e-model-444D/README.md).
Primary Area: optimization
Submission Number: 14046
Loading