Random Policy Valuation is Enough for LLM Reasoning with Verifiable Rewards

ICLR 2026 Conference Submission10272 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Large Language Models (LLMs), Reinforcement Learning, RLVR, Math Reasoning, Diversity
TL;DR: A minimalist yet highly effective RL method that maintains both quality and diversity for LLM reasoning
Abstract: RL with Verifiable Rewards (RLVR) has emerged as a promising paradigm for improving the reasoning abilities of large language models (LLMs). Current methods rely primarily on policy optimization frameworks like PPO and GRPO, which follow generalized policy iteration that alternates between evaluating the current policy's value and improving the policy based on evaluation. While effective, they often suffer from training instability and diversity collapse, requiring complex heuristic tricks and careful tuning. We observe that standard RLVR in math reasoning can be formalized as a specialized finite-horizon Markov Decision Process with deterministic state transitions, tree-structured dynamics, and binary terminal rewards. Though large in scale, the underlying structure is simpler than general-purpose control settings for which popular RL algorithms (e.g., PPO) were developed, suggesting that several sophisticated techniques in existing methods may be reduced or even omitted. Based on this insight, we prove a surprising result: the optimal action can be recovered from the Q-function of a fixed uniformly random policy, thereby bypassing the generalized policy iteration loop and its associated heuristics. We introduce \underline{\textbf{R}}andom P\underline{\textbf{o}}licy \underline{\textbf{V}}aluation for Div\underline{\textbf{e}}rse \underline{\textbf{R}}easoning (ROVER) to translate this principle into a practical and scalable algorithm for LLM math reasoning, a minimalist yet highly effective RL method that samples actions from a softmax over these uniform-policy Q-values. ROVER preserves diversity throughout training, allowing sustained exploration of multiple valid pathways. Across multiple base models and standard math reasoning benchmarks, ROVER demonstrates superior performance in both \textbf{quality} (\textbf{+8.2} on pass@1, \textbf{+16.8} on pass@256) and \textbf{diversity} (\textbf{+20.5\%}), despite its radical simplification compared to strong, complicated existing methods.
Primary Area: foundation or frontier models, including LLMs
Submission Number: 10272
Loading