Equivariant Splitting: Self-supervised learning from incomplete data

ICLR 2026 Conference Submission13294 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: inverse problems, self-supervised imaging, equivariant neural networks
Abstract: Self-supervised learning for inverse problems allows to train a reconstruction network from noise and/or incomplete data alone. These methods have the potential of enabling learning-based solutions when obtaining ground-truth references for training is expensive or even impossible. In this paper, we propose a new self-supervised learning strategy devised for the challenging setting where measurements are observed via a single incomplete observation model. We introduce a new definition of equivariance in the context of reconstruction networks, and show that the combination of self-supervised splitting losses and equivariant reconstruction networks results in unbiased estimates of the supervised loss. Through a series of experiments on image inpainting, accelerated magnetic resonance imaging, and compressive sensing, we demonstrate that the proposed loss achieves state-of-the-art performance in settings with highly rank-deficient forward models.
Primary Area: applications to computer vision, audio, language, and other modalities
Submission Number: 13294
Loading