Support  Vector  Generation: Kernelizing Large Language Models for Efficient Zero‑Shot NLP

Published: 18 Sept 2025, Last Modified: 29 Oct 2025NeurIPS 2025 posterEveryoneRevisionsBibTeXCC BY-NC-ND 4.0
Keywords: Zero-shot Learning, Kernel Machines, Large Language Models, Support Vector Generation, Resource-constrained NLP
Abstract: We introduce Support Vector Generation (SVG), a kernel-based framework that converts a frozen language model into an interpretable, training-free classifier for zero- and few-shot learning. SVG operates by combining Metropolis–Hastings sampling with support vector machine optimization in the reproducing kernel Hilbert space (RKHS) induced by the language model's embedding. Each classification decision is based on a weighted combination of at most 32 natural-language sentences, which serve as explicit support vectors and provide faithful rationales. Our theoretical analysis proves that SVG minimizes the empirical hinge loss over the span of the supports and admits a generalization bound independent of the language model size. Experiments on the GLUE benchmark show that SVG matches or surpasses prompting-based zero-shot baselines in accuracy across multiple tasks—without any fine-tuning or GPU acceleration. Notably, our CPU-only implementation completes training in under three minutes per task, and maintains competitive inference speed. These results suggest that SVG offers a viable path toward efficient, interpretable NLP systems under compute constraints.
Primary Area: Deep learning (e.g., architectures, generative models, optimization for deep networks, foundation models, LLMs)
Submission Number: 6296
Loading