ESCAPE: Equivariant Shape Completion via Anchor Point Encoding

17 Sept 2024 (modified: 15 Nov 2024)ICLR 2025 Conference Withdrawn SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: 3D Shape Completion, Rotation Equivariance
Abstract: Shape completion, a crucial task in 3D computer vision, involves predicting and filling the missing regions of scanned or partially observed objects. Current methods often suffer from orientation-dependent inconsistencies, particularly under varying rotations, limiting their real-world applicability. We introduce ESCAPE (Equivariant Shape Completion via Anchor Point Encoding), a novel framework designed to achieve rotation-equivariant shape completion. Our approach employs a distinctive encoding strategy, representing objects by selecting anchor points and utilizing them in a distance-based encoder akin to the D2 shape distribution. This enables the model to capture a consistent, rotation-equivariant understanding of the object’s geometry. ESCAPE leverages a transformer architecture to encode and decode the distance transformations, ensuring that generated shape completions remain accurate and equivariant under rotational transformations. Additionally, we perform optimization to refine the predicted shapes from anchor point positions and predicted encodings, Experimental evaluations demonstrate that ESCAPE achieves robust, high-quality reconstructions across arbitrary rotations and translations, showcasing its effectiveness in real-world applications.
Supplementary Material: pdf
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1311
Loading