DelvePO: Direction-Guided Self-Evolving Framework for Flexible Prompt Optimization

ICLR 2026 Conference Submission15620 Authors

19 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Prompt Optimization, Prompt Engineering, Evolutionary Algorithm, Large Language Models
TL;DR: This paper presents a task-agnostic, component-customizable and flexible framework to optimize the prompts in a self-evolve manner. To the best of our knowledge, this is the first work that introduces memory mechanism to PO.
Abstract: Prompt Optimization has emerged as a crucial approach due to its capabilities in steering Large Language Models to solve various tasks. However, current works mainly rely on the random rewriting ability of LLMs, and the optimization process generally focus on specific influencing factors, which makes it easy to fall into local optimum. Besides, the performance of the optimized prompt is often unstable, which limits its transferability in different tasks. To address the above challenges, we propose $\textbf{DelvePO}$ ($\textbf{D}$irection-Guid$\textbf{e}$d Se$\textbf{l}$f-E$\textbf{v}$olving Framework for Fl$\textbf{e}$xible $\textbf{P}$rompt $\textbf{O}$ptimization), a task-agnostic framework to optimize prompts in self-evolve manner. In our framework, we decouple prompts into different components that can be used to explore the impact that different factors may have on various tasks. On this basis, we introduce working memory, through which LLMs can alleviate the deficiencies caused by their own uncertainties and further obtain key insights to guide the generation of new prompts. Extensive experiments conducted on different tasks covering various domains for both open- and closed-source LLMs, including DeepSeek-R1-Distill-Llama-8B, Qwen2.5-7B-Instruct and GPT-4o-mini. Experimental results show that DelvePO consistently outperforms previous SOTA methods under identical experimental settings, demonstrating its effectiveness and transferability across different tasks.
Supplementary Material: pdf
Primary Area: foundation or frontier models, including LLMs
Submission Number: 15620
Loading