Chem-R: Learning to Reason as a Chemist

08 Sept 2025 (modified: 11 Feb 2026)Submitted to ICLR 2026EveryoneRevisionsBibTeXCC BY 4.0
Keywords: LLM Reasoning, AI for Chemistry
Abstract: Although large language models (LLMs) have significant potential to advance chemical discovery, current LLMs lack core chemical knowledge, produce unreliable reasoning trajectories, and exhibit suboptimal performance across diverse chemical tasks. To address these challenges, we propose **Chem-R**, a generalizable **Chem**ical **R**easoning model designed to emulate the deliberative processes of chemists. Chem-R is trained through a three-phase framework that progressively builds advanced reasoning capabilities, including: 1) Chemical Foundation Training, which establishes core chemical knowledge. 2) Chemical Reasoning Protocol Distillation, incorporating structured, expert-like reasoning traces to guide systematic and reliable problem solving. 3) Multi-task Group Relative Policy Optimization that optimizes the model for balanced performance across diverse molecular- and reaction-level tasks. This structured pipeline enables Chem-R to achieve state-of-the-art performance on comprehensive benchmarks, surpassing leading large language models, including Gemini-2.5-Pro and DeepSeek-R1, by up to 32% on molecular tasks and 48% on reaction tasks. Meanwhile, Chem-R also consistently outperforms the existing chemical foundation models across both molecular and reaction level tasks. These results highlight Chem-R’s robust generalization, interpretability, and potential as a foundation for next-generation AI-driven chemical discovery.
Supplementary Material: zip
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 3013
Loading