The Semi-Random Satisfaction of Voting AxiomsDownload PDF

21 May 2021, 20:44 (edited 26 Oct 2021)NeurIPS 2021 SpotlightReaders: Everyone
  • Keywords: social choice, voting, axioms, smoothed analysis
  • TL;DR: This paper characterizes the worst average-case satisfaction of two well-studied and important voting axioms, namely Condorcet criterion and participation, in semi-random models
  • Abstract: We initiate the work towards a comprehensive picture of the worst average-case satisfaction of voting axioms in semi-random models, to provide a finer and more realistic foundation for comparing voting rules. We adopt the semi-random model and formulation in [Xia 2020], where an adversary chooses arbitrarily correlated ``ground truth'' preferences for the agents, on top of which random noises are added. We focus on characterizing the semi-random satisfaction of two well-studied voting axioms: Condorcet criterion and participation. We prove that for any fixed number of alternatives, when the number of voters $n$ is sufficiently large, the semi-random satisfaction of the Condorcet criterion under a wide range of voting rules is $1$, $1-\exp(-\Theta(n))$, $\Theta(n^{-0.5})$, $ \exp(-\Theta(n))$, or being $\Theta(1)$ and $1-\Theta(1)$ at the same time; and the semi-random satisfaction of participation is $1-\Theta(n^{-0.5})$. Our results address open questions by Berg and Lepelley in 1994, and also confirm the following high-level message: the Condorcet criterion is a bigger concern than participation under realistic models.
  • Supplementary Material: pdf
  • Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
12 Replies