Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: federated learning, personalized federated learning, bayesian coreset, submodularity, variational inference, coresets, optimization
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: The paper deals with utilizing a bayesian coreset on individual client's data in a federated learning setting that takes into account personalization at each client's side.
Abstract: In a distributed machine learning setting like Federated Learning where there are multiple clients involved which update their individual weights to a single central server, often training on the entire individual client's dataset for each client becomes cumbersome. To address this issue we propose CORESET-PFEDBAYES : a personalized coreset weighted federated learning setup where the training updates for each individual clients are forwarded to the central server based on only individual client coreset based representative data points instead of the entire client data. Through theoretical analysis we present how the average generalization error is minimax optimal up to logarithm bounds (upper bounded by $\mathcal{O}(n_k^{-\frac{2 \beta}{2 \beta+\boldsymbol{\Lambda}}} \log ^{2 \delta^{\prime}}(n_k))$) and lower bounds of $\mathcal{O}(n_k^{-\frac{2 \beta}{2 \beta+\boldsymbol{\Lambda}}})$, and how the overall generalization error on the data likelihood differs from a vanilla Federated Learning setup as a closed form function ${\boldsymbol{\Im}}(\boldsymbol{w}, n_k)$ of the coreset weights $\boldsymbol{w}$ and coreset sample size $n_k$.
Our experiments on different benchmark datasets based on a variety of recent personalized federated learning architectures show significant gains as compared to random sampling on the training data followed by federated learning, thereby indicating how intelligently selecting such training samples can help in performance. Additionally, through experiments on medical datasets our proposed method showcases some gains as compared to other submodular optimization based approaches used for subset selection on client's data.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: pdf
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: general machine learning (i.e., none of the above)
Submission Number: 9034
Loading