Keywords: Ordinal regression, Calibration, Deep neural networks, Unimodality, Loss function, Soft ordinal encoding, Label smoothing, Order-aware calibration
TL;DR: We propose a loss function that introduces order-aware calibration in ordinal regression tasks, combining soft ordinal encoding and label-smoothing-based regularization to enforce both calibration and unimodality.
Abstract: Recent studies have shown that deep neural networks are not well-calibrated and produce over-confident predictions.
The miscalibration issue primarily stems from the minimization of cross-entropy, which aims to align predicted softmax probabilities with one-hot labels. In ordinal regression tasks, this problem is compounded by an additional challenge: the expectation that softmax probabilities should exhibit unimodal distribution is not met with cross-entropy. Rather, the ordinal regression literature has focused on unimodality and overlooked calibration. To address these issues, we propose a novel loss function that introduces order-aware calibration, ensuring that prediction confidence adheres to ordinal relationships between classes. It incorporates soft ordinal encoding and label-smoothing-based regularization to enforce both calibration and unimodality. Extensive experiments across three popular ordinal regression benchmarks demonstrate that our approach achieves state-of-the-art calibration without compromising accuracy.
Supplementary Material: zip
Primary Area: unsupervised, self-supervised, semi-supervised, and supervised representation learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 14054
Loading