Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning

Published: 22 Jan 2025, Last Modified: 16 Mar 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: offline reinforcement learning, language models, dialogue, robotics
TL;DR: We present a new offline RL algorithm specifically to fine-tune pretrained LLMs and VLMs better.
Abstract: Value-based reinforcement learning (RL) can in principle learn effective policies for a wide range of multi-turn problems, from games to dialogue to robotic control, including via offline RL from static previously collected datasets. However, despite the widespread use of policy gradient methods to train large language models for single turn tasks (e.g., question answering), value-based methods for multi-turn RL in an off-policy or offline setting have proven particularly challenging to scale to the setting of large language models. This setting requires effectively leveraging pretraining, scaling to large architectures with billions of parameters, and training on large datasets, all of which represent major challenges for current value-based RL methods. In this work, we propose a novel offline RL algorithm that addresses these drawbacks, casting Q-learning as a modified supervised fine-tuning (SFT) problem where the probabilities of tokens directly translate to Q-values. In this way we obtain an algorithm that smoothly transitions from maximizing the likelihood of the data during pretraining to learning a near-optimal Q-function during finetuning. Our algorithm has strong theoretical foundations, enjoying performance bounds similar to state-of-the-art Q-learning methods, while in practice utilizing an objective that closely resembles SFT. Because of this, our approach can enjoy the full benefits of the pretraining of language models, without the need to reinitialize any weights before RL finetuning, and without the need to initialize new heads for predicting values or advantages. Empirically, we evaluate our method on both pretrained LLMs and VLMs, on a variety of tasks including both natural language dialogue and robotic manipulation and navigation from images.
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 11981
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview