Encoding Unitig-level Assembly Graphs with Heterophilous Constraints for Metagenomic Contigs Binning

Published: 16 Jan 2024, Last Modified: 15 Mar 2024ICLR 2024 posterEveryoneRevisionsBibTeX
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Metagenomics Binning, Computational Genomics, Graph Neural Networks
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
Abstract: Metagenomics studies genomic material derived from mixed microbial communities in diverse environments, holding considerable significance for both human health and environmental sustainability. Metagenomic binning refers to the clustering of genomic subsequences obtained from high-throughput DNA sequencing into distinct bins, each representing a constituent organism within the community. Mainstream binning methods primarily rely on sequence features such as composition and abundance, making them unable to effectively handle sequences shorter than 1,000 bp and inherent noise within sequences. Several binning tools have emerged, aiming to enhance binning outcomes by using the assembly graph generated by assemblers, which encodes valuable overlapping information among genomic sequences. However, existing assembly graph-based binners mainly focus on simplified contig-level assembly graphs that are recreated from assembler’s original graphs, unitig-level assembly graphs. The simplification reduces the resolution of the connectivity information in original graphs. In this paper, we design a novel binning tool named UnitigBin, which leverages representation learning on unitig-level assembly graphs while adhering to heterophilious constraints imposed by single-copy marker genes, ensuring that constrained contigs cannot be grouped together. Extensive experiments conducted on synthetic and real datasets demonstrate that UnitigBin significantly surpasses state-of-the-art binning tools.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
Supplementary Material: zip
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: applications to physical sciences (physics, chemistry, biology, etc.)
Submission Number: 1841