Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Keywords: Deep metric learning, Open-world visual recognition, Threshold consistency
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2024/AuthorGuide.
TL;DR: Quantify the notion of threshold inconsistency in deep metric learning through a novel variance-based metric, and introduce a simple yet effective regularization loss to improve threshold consistency for DML models.
Abstract: Existing losses used in deep metric learning (DML) for image retrieval often lead to highly non-uniform intra-class and inter-class representation structures across test classes and data distributions. When combined with the common practice of using a fixed threshold to declare a match, this gives rise to significant performance variations in terms of false accept rate (FAR) and false reject rate (FRR) across test classes and data distributions. We define this issue in DML as threshold inconsistency. In real-world applications, such inconsistency often complicates the threshold selection process when deploying large-scale image retrieval systems. To measure this inconsistency, we propose a novel variance-based metric called Operating-Point-Inconsistency-Score (OPIS) that quantifies the variance in the operating characteristics across classes. Using the OPIS metric, we find that achieving high accuracy levels in a DML model does not automatically guarantee threshold consistency. In fact, our investigation reveals a Pareto frontier in the high-accuracy regime, where existing methods to improve accuracy often lead to degradation in threshold consistency. To address this trade-off, we introduce the Threshold-Consistent Margin (TCM) loss, a simple yet effective regularization technique that promotes uniformity in representation structures across classes by selectively penalizing hard sample pairs. Large-scale experiments demonstrate TCM's effectiveness in enhancing threshold consistency while preserving accuracy, simplifying the threshold selection process in practical DML settings.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors' identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Primary Area: metric learning, kernel learning, and sparse coding
Submission Number: 2124
Loading