FedReFT+: Federated Representation Fine-Tuning with All-But-Me Aggregation

ACL ARR 2025 May Submission4618 Authors

20 May 2025 (modified: 03 Jul 2025)ACL ARR 2025 May SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Abstract: Parameter-efficient fine-tuning (PEFT) has attracted significant attention for adapting large pre-trained models by modifying a small subset of parameters. Recently, Representation Fine-tuning (ReFT) has emerged as an effective alternative. ReFT shifts the fine-tuning paradigm from updating model weights to directly manipulating hidden representations that capture rich semantic information, and perform better than state-of-the-art PEFTs in standalone settings. However, its application in Federated Learning (FL) remains challenging due to heterogeneity in clients' data distributions, model capacities, and computational resources. To address these challenges, we introduce Federated Representation Fine-Tuning (FedReFT+), a novel approach to fine-tune the client's hidden representation. FedReFT+ applies sparse intervention layers to steer hidden representations directly, offering a lightweight and semantically rich fine-tuning alternative ideal for edge devices. However, representation-level updates are especially vulnerable to aggregation mismatch under different task heterogeneity, where naive averaging can corrupt semantic alignment. To mitigate this issue, we propose All-But-Me (ABM) aggregation, where each client receives the aggregated updates of others and partially incorporates them, enabling stable and personalized learning by balancing local focus with global knowledge. We evaluate FedReFT+ on commonsense reasoning, arithmetic reasoning, instruction-tuning, and GLUE, where it consistently outperforms state-of-the-art PEFT methods in FL, achieving 7x-15x higher parameter efficiency compared to leading LoRA-based approaches.
Paper Type: Long
Research Area: Machine Learning for NLP
Research Area Keywords: Representation Fine-Tuning, Aggregation, Personalized Federated Learning
Contribution Types: Approaches low compute settings-efficiency
Languages Studied: English
Submission Number: 4618
Loading