PACE: A Parallelizable Computation Encoder for Directed Acyclic GraphsDownload PDF

Published: 28 Jan 2022, Last Modified: 22 Oct 2023ICLR 2022 SubmittedReaders: Everyone
Keywords: DAG encoder, graph neural network, Transformer
Abstract: Optimization of directed acyclic graph (DAG) structures has many applications, such as neural architecture search (NAS) and probabilistic graphical model learning. Encoding DAGs into real vectors is a dominant component in most neural-network-based DAG optimization frameworks. Currently, most popular DAG encoders use an asynchronous message passing scheme which sequentially processes nodes according to the dependency between nodes in a DAG. That is, a node must not be processed until all its predecessors are processed. As a result, they are inherently not parallelizable. In this work, we propose a Parallelizable Attention-based Computation structure Encoder (PACE) that processes nodes simultaneously and encodes DAGs in parallel. We demonstrate the superiority of PACE through encoder-dependent optimization subroutines that search the optimal DAG structure based on the learned DAG embeddings. Experiments show that PACE not only improves the effectiveness over previous sequential DAG encoders with a significantly boosted training and inference speed, but also generates smooth latent (DAG encoding) spaces that are beneficial to downstream optimization subroutines.
One-sentence Summary: This paper introduces a novel DAG encoder based on Transformer to encode the computation structure defined by DAGs in a fully parallelizable manner.
Supplementary Material: zip
Community Implementations: [![CatalyzeX](/images/catalyzex_icon.svg) 2 code implementations](https://www.catalyzex.com/paper/arxiv:2203.10304/code)
17 Replies

Loading