Crossformer: Transformer Utilizing Cross-Dimension Dependency for Multivariate Time Series Forecasting
Keywords: Transformer, multivariate time series forecasting, deep learning
Abstract: Recently many deep models have been proposed for multivariate time series (MTS) forecasting. In particular, Transformer-based models have shown great potential because they can capture long-term dependency. However, existing Transformer-based models mainly focus on modeling the temporal dependency (cross-time dependency) yet often omit the dependency among different variables (cross-dimension dependency), which is critical for MTS forecasting. To fill the gap, we propose Crossformer, a Transformer-based model utilizing cross-dimension dependency for MTS forecasting. In Crossformer, the input MTS is embedded into a 2D vector array through the Dimension-Segment-Wise (DSW) embedding to preserve time and dimension information. Then the Two-Stage Attention (TSA) layer is proposed to efficiently capture the cross-time and cross-dimension dependency. Utilizing DSW embedding and TSA layer, Crossformer establishes a Hierarchical Encoder-Decoder (HED) to use the information at different scales for the final forecasting. Extensive experimental results on six real-world datasets show the effectiveness of Crossformer against previous state-of-the-arts.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Applications (eg, speech processing, computer vision, NLP)
TL;DR: We propose Crossformer, a Transformer-based model that explicitly utilizes cross-dimension dependency for multivariate time series forecasting.
21 Replies
Loading