Differentiable Optimization of Similarity Scores Between Models and Brains

ICLR 2025 Conference Submission12509 Authors

27 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: similarity measures, representational alignment, procrustes distance, centered kernel alignment, linear regression
TL;DR: Not all metrics for representational alignment are created equal; we show limitations in similarity metrics between models and brains by maximizing similarity with gradient descent.
Abstract: How do we know if two systems - biological or artificial - process information in a similar way? Similarity measures such as linear regression, Centered Kernel Alignment (CKA), Normalized Bures Similarity (NBS), and angular Procrustes distance, are often used to quantify this similarity. However, it is currently unclear what drives high similarity scores and even what constitutes a "good" score. Here, we introduce a novel tool to investigate these questions by differentiating through similarity measures to directly maximize the score. Surprisingly, we find that high similarity scores do not guarantee encoding task-relevant information in a manner consistent with neural data; and this is particularly acute for CKA and even some variations of cross-validated and regularized linear regression. We find no consistent threshold for a good similarity score - it depends on both the measure and the dataset. In addition, synthetic datasets optimized to maximize similarity scores initially learn the highest variance principal component of the target dataset, but some methods like angular Procrustes capture lower variance dimensions much earlier than methods like CKA. To shed light on this, we mathematically derive the sensitivity of CKA, angular Procrustes, and NBS to the variance of principal component dimensions, and explain the emphasis CKA places on high variance components. Finally, by jointly optimizing multiple similarity measures, we characterize their allowable ranges and reveal that some similarity measures are more constraining than others. While current measures offer a seemingly straightforward way to quantify the similarity between neural systems, our work underscores the need for careful interpretation. We hope the tools we developed will be used by practitioners to better understand current and future similarity measures.
Primary Area: applications to neuroscience & cognitive science
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 12509
Loading