Towards Empowerment Gain through Causal Structure Learning in Model-Based RL

ICLR 2025 Conference Submission1429 Authors

18 Sept 2024 (modified: 27 Nov 2024)ICLR 2025 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Causal RL, MBRL, Empowerment, Intrinsic Motivation
TL;DR: We propose a framework, Empowerment through Causal Learning , where an agent with the awareness of causal models achieves empowerment-driven exploration and utilize its structured causal perception and control for task learning.
Abstract: In Model-Based Reinforcement Learning (MBRL), incorporating causal structures into dynamics models provides agents with a structured understanding of the environments, enabling efficient decision. Empowerment as an intrinsic motivation enhances the ability of agents to actively control their environments by maximizing the mutual information between future states and actions. We posit that empowerment coupled with causal understanding can improve controllability, while enhanced empowerment gain can further facilitate causal reasoning in MBRL. To improve learning efficiency and controllability, we propose a novel framework, Empowerment through Causal Learning (ECL), where an agent with the awareness of causal dynamics models achieves empowerment-driven exploration and optimizes its causal structure for task learning. Specifically, ECL operates by first training a causal dynamics model of the environment based on collected data. We then maximize empowerment under the causal structure for exploration, simultaneously using data gathered through exploration to update causal dynamics model to be more controllable than dense dynamics model without causal structure. In downstream task learning, an intrinsic curiosity reward is included to balance the causality, mitigating overfitting. Importantly, ECL is method-agnostic and is capable of integrating various causal discovery methods. We evaluate ECL combined with $3$ causal discovery methods across $6$ environments including pixel-based tasks, demonstrating its superior performance compared to other causal MBRL methods, in terms of causal discovery, sample efficiency, and asymptotic performance.
Supplementary Material: zip
Primary Area: reinforcement learning
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 1429
Loading