Blinded by Generated Contexts: How Language Models Merge Generated and Retrieved Contexts for Open-Domain QA?Download PDF

Anonymous

16 Feb 2024ACL ARR 2024 February Blind SubmissionReaders: Everyone
Abstract: While auxiliary information has become a key to enhancing Large Language Models (LLMs), relatively little is known about how LLMs merge these contexts, specifically contexts generated by LLMs and those retrieved from external sources. To investigate this, we formulate a systematic framework to identify whether LLMs' responses, derived from the integration of generated and retrieved contexts, are attributed to either generated or retrieved contexts. To easily trace the origin of the response, we construct datasets with conflicting contexts, i.e., each question is paired with both generated and retrieved contexts, yet only one of them contains the correct answer. Our experiments reveal a significant bias in several LLMs (GPT-4/3.5 and Llama2) to favor generated contexts, even when they provide incorrect information. We further identify two key factors contributing to this bias: i) contexts generated by LLMs typically show greater similarity to the questions, increasing their likelihood of being selected; ii) the segmentation process used in retrieved contexts disrupts their completeness, thereby hindering their full utilization in LLMs. Our analysis enhances the understanding of how LLMs merge diverse contexts, offering valuable insights for advancing current augmentation methods for LLMs.
Paper Type: long
Research Area: Interpretability and Analysis of Models for NLP
Contribution Types: Model analysis & interpretability, NLP engineering experiment
Languages Studied: English
0 Replies

Loading