CellRep: A Multichannel Image Representation Learning Model

Published: 31 Mar 2025, Last Modified: 31 Mar 2025CVDD CVPR2025 Workshop PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Computer Vision, Microscopy
Abstract: Reliable feature extraction from multichannel microscopy images is crucial for biological discovery, but existing models typically require fixed channel architectures or artificial RGB compositing. We introduce CellRep, a channel-invariant foundation model that generates consistent feature representations across varying experimental conditions. By employing content-aware patch embedding and channel-mixing transformer encoding, CellRep learns to identify and represent biological structures independent of channel position or type. Our evaluations demonstrate CellRep’s strong performance as a microscopy image featurizer for perturbation prediction, particularly when generalizing to novel cell types, imaging techniques, and channel configurations not seen during training.
Submission Type: Original Work
Submission Number: 13
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview