Black Boxes and Looking Glasses: Multilevel Symmetries, Reflection Planes, and Convex Optimization in Deep Networks
Keywords: deep neural networks, convex optimization, geometric algebra, Lasso model, sparsity
TL;DR: We derive equivalent convex formulations of deep neural networks and identify novel reflection planes using geometric algebra. We show that theoretically predicted Lasso features appear in Large Language Models.
Abstract: We show that training deep neural networks (DNNs) with absolute value activation and arbitrary input dimension can be formulated as equivalent convex Lasso problems with novel features expressed using geometric algebra. This formulation reveals geometric structures encoding symmetry in neural networks. Using the equivalent Lasso form of DNNs, we formally prove a fundamental distinction between deep and shallow networks: deep networks inherently favor symmetric structures in their fitted functions, with greater depth enabling multilevel symmetries, i.e., symmetries within symmetries. Moreover, Lasso features represent distances to hyperplanes that are reflected across training points. These reflection hyperplanes are spanned by training data and are orthogonal to optimal weight vectors. Numerical experiments support theory and demonstrate theoretically predicted features when training networks using embeddings generated by Large Language Models.
Supplementary Material: zip
Primary Area: optimization
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 4741
Loading