Knowledge Starts with Practice: Knowledge-Aware Exercise Generative Recommendation with Adaptive Multi-Agent Cooperation
Keywords: Exercise Generative Recommendation, Knowledge State Perception, Personalized Learning, Multi-agent Cooperation
Abstract: Adaptive learning, which requires the in-depth understanding of students' learning processes and rational planning of learning resources, plays a crucial role in intelligent education. However, how to effectively model these two processes and seamlessly integrate them poses significant implementation challenges for adaptive learning. As core learning resources, exercises have the potential to diagnose students' knowledge states during the learning processes and provide personalized learning recommendations to strengthen students' knowledge, thereby serving as a bridge to boost student-oriented adaptive learning. Therefore, we introduce a novel task called Knowledge-aware Exercise Generative Recommendation (KEGR). It aims to dynamically infer students' knowledge states from their past exercise responses and customizably generate new exercises. To achieve KEGR, we propose an adaptive multi-agent cooperation framework, called ExeGen, inspired by the excellent reasoning and generative capabilities of LLM-based AI agents. Specifically, ExeGen coordinates four specialized agents for supervision, knowledge state perception, exercise generation, and quality refinement through an adaptive loop workflow pipeline. More importantly, we devise two enhancement mechanisms in ExeGen: 1) A human-simulated knowledge perception mechanism mimics students' cognitive processes and generates interpretable knowledge state descriptions via demonstration-based In-Context Learning (ICL). In this mechanism, a dual-matching strategy is further designed to retrieve highly relevant demonstrations for reliable ICL reasoning. 2) An exercise generation-adversarial mechanism collaboratively refines exercise generation leveraging a group of quality evaluation expert agents via iterative adversarial feedback. Finally, a comprehensive evaluation protocol is carefully designed to assess ExeGen. Extensive experiments on real-world educational datasets and a practical deployment in college education demonstrate the effectiveness and superiority of ExeGen. The code is available at https://github.com/dsz532/exeGen.
Primary Area: Applications (e.g., vision, language, speech and audio, Creative AI)
Submission Number: 12760
Loading