Keywords: robust object detection, autonomous driving
Abstract: Safety-critical applications such as autonomous driving require robust object detection invariant to real-world domain shifts. Such shifts can be regarded as different domain styles, which can vary substantially due to environment changes and sensor noises, but deep models only know the training domain style. Such domain style gap impedes object detection generalization on diverse real-world domains. Existing classification domain generalization (DG) methods cannot effectively solve the robust object detection problem, because they either rely on multiple source domains with large style variance or destroy the content structures of the original images. In this paper, we analyze and investigate effective solutions to overcome domain style overfitting for robust object detection without the above shortcomings. Our method, dubbed as Normalization Perturbation (NP), perturbs the channel statistics of source domain low-level features to synthesize various latent styles, so that the trained deep model can perceive diverse potential domains and generalizes well even without observations of target domain data in training. This approach is motivated by the observation that feature channel statistics of the target domain images deviate around the source domain statistics. We further explore the style-sensitive channels for effective style synthesis. Normalization Perturbation only relies on a single source domain and is surprisingly simple and effective, contributing a practical solution by effectively adapting or generalizing classification DG methods to robust object detection. Extensive experiments demonstrate the effectiveness of our method for generalizing object detectors under real-world domain shifts.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics
Submission Guidelines: Yes
Please Choose The Closest Area That Your Submission Falls Into: Deep Learning and representational learning
TL;DR: We perturb feature channel statistics to generalize object detectors under real-world domain shifts.
16 Replies
Loading