Routing Experts: Learning to Route Dynamic Experts in Existing Multi-modal Large Language Models

Published: 22 Jan 2025, Last Modified: 12 Feb 2025ICLR 2025 PosterEveryoneRevisionsBibTeXCC BY 4.0
Keywords: multimodal large language model, dynamic routing
Abstract: Recently, mixture of experts (MoE) has become a popular paradigm for achieving the trade-off between modal capacity and efficiency of multimodal large language models (MLLMs). Different from previous efforts, we are dedicated to exploring the dynamic experts in existing MLLMs and showing that a standard MLLM can also be a mixture of experts. However, achieving this target is still notoriously challenging. The well-trained MLLMs are more accustomed to the fixed pathway and a drastic change in its inference manner also greatly impedes its performance. To address these issues, we propose a novel dynamic expert routing method for existing MLLMs, termed Routing Experts (RoE), which can achieve example-dependent optimal path routing without obvious structure tweaks. Meanwhile, a new structure sparsity regularization is also introduced to force the well-trained MLLMs to learn more short-cut pathways. In addition, we also address the alignment of the training and inference of MLLMs in terms of network routing. To validate RoE, we apply it to a set of existing MLLMs, including LLaVA-1.5, LLaVA-HR and VILA, and conduct extensive experiments on a bunch of VL benchmarks. The experiment results not only show the effectiveness of our RoE in improving MLLMs' efficiency, but also yield obvious advantages over MoE-LLaVA in both performance and speed, e.g., an average performance gain of 3.3% on 5 benchmarks while being 1.61 times faster. Our code is anonymously released at https://github.com/DoubtedSteam/RoE
Primary Area: applications to computer vision, audio, language, and other modalities
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 5360
Loading

OpenReview is a long-term project to advance science through improved peer review with legal nonprofit status. We gratefully acknowledge the support of the OpenReview Sponsors. © 2025 OpenReview