Unfolding Generative Flows

ICLR 2026 Conference Submission14319 Authors

18 Sept 2025 (modified: 08 Oct 2025)ICLR 2026 Conference SubmissionEveryoneRevisionsBibTeXCC BY 4.0
Keywords: Generative Model, Dynamical Systems
Abstract: Continuous Normalizing Flows (CNFs) offer elegant generative modeling but remain bottlenecked by slow sampling: producing a single sample requires solving a nonlinear ODE with hundreds of function evaluations. Recent approaches such as Rectified Flow and OT-CFM accelerate sampling by straightening trajectories, yet the learned dynamics remain nonlinear black boxes, limiting both efficiency and interpretability. We propose a fundamentally different perspective: globally linearizing flow dynamics via Koopman theory. By lifting Conditional Flow Matching (CFM) into a higher-dimensional Koopman space, we represent its evolution with a single linear operator. This yields two key benefits. First, sampling becomes one-step and parallelizable, computed analytically via the matrix exponential. Second, the Koopman operator provides a spectral blueprint of generation, enabling novel interpretability through its eigenvalues and modes. We derive a practical, simulation-free training objective that enforces infinitesimal consistency with the teacher’s dynamics and show that this alignment preserves fidelity along the full generative path, distinguishing our method from boundary-only distillation. Empirically, our approach achieves competitive sample quality with dramatic speedups, while uniquely enabling spectral analysis of generative flows.
Primary Area: generative models
Submission Number: 14319
Loading