Keywords: Text-to-image diffusion model, data memorization detection, DDIM Inversion
TL;DR: we propose a simple yet effective image-level memorization detection method, namely Inversion-based Inference Perturbation (IIP).
Abstract: Recent studies have discovered that widely used text-to-image diffusion models can replicate training samples during image generation, a phenomenon known as memorization. Existing detection methods primarily focus on identifying memorized prompts. However, in real-world scenarios, image owners may need to verify whether their proprietary or personal images have been memorized by the model, even in the absence of paired prompts or related metadata. We refer to this challenge as image-level memorization detection, where current methods relying on original prompts fall short. In this work, we uncover two characteristics of memorized images after perturbing the inference procedure: lower similarity of the original images and larger magnitudes of TCNP.
Building on these insights, we propose Inversion-based Inference Perturbation (IIP), a new framework for image-level memorization detection. Our approach uses unconditional DDIM inversion to derive latent codes that contain core semantic information of original images and optimizes random prompt embeddings to introduce effective perturbation. Memorized images exhibit distinct characteristics within the proposed pipeline, providing a robust basis for detection. To support this task, we construct a comprehensive setup for the image-level memorization detection, carefully curating datasets to simulate realistic memorization scenarios. Using this setup, we evaluate our IIP framework across three different memorization settings, demonstrating its state-of-the-art performance in identifying memorized images in various settings, even in the presence of data augmentation attacks.
Primary Area: alignment, fairness, safety, privacy, and societal considerations
Code Of Ethics: I acknowledge that I and all co-authors of this work have read and commit to adhering to the ICLR Code of Ethics.
Submission Guidelines: I certify that this submission complies with the submission instructions as described on https://iclr.cc/Conferences/2025/AuthorGuide.
Reciprocal Reviewing: I understand the reciprocal reviewing requirement as described on https://iclr.cc/Conferences/2025/CallForPapers. If none of the authors are registered as a reviewer, it may result in a desk rejection at the discretion of the program chairs. To request an exception, please complete this form at https://forms.gle/Huojr6VjkFxiQsUp6.
Anonymous Url: I certify that there is no URL (e.g., github page) that could be used to find authors’ identity.
No Acknowledgement Section: I certify that there is no acknowledgement section in this submission for double blind review.
Submission Number: 233
Loading