Fair Sequential Selection Using Supervised Learning ModelsDownload PDF

21 May 2021, 20:43 (modified: 21 Jan 2022, 16:26)NeurIPS 2021 PosterReaders: Everyone
Keywords: Supervised Learning, Fairness, Sequential Selection
Abstract: We consider a selection problem where sequentially arrived applicants apply for a limited number of positions/jobs. At each time step, a decision maker accepts or rejects the given applicant using a pre-trained supervised learning model until all the vacant positions are filled. In this paper, we discuss whether the fairness notions (e.g., equal opportunity, statistical parity, etc.) that are commonly used in classification problems are suitable for the sequential selection problems. In particular, we show that even with a pre-trained model that satisfies the common fairness notions, the selection outcomes may still be biased against certain demographic groups. This observation implies that the fairness notions used in classification problems are not suitable for a selection problem where the applicants compete for a limited number of positions. We introduce a new fairness notion, ``Equal Selection (ES),'' suitable for sequential selection problems and propose a post-processing approach to satisfy the ES fairness notion. We also consider a setting where the applicants have privacy concerns, and the decision maker only has access to the noisy version of sensitive attributes. In this setting, we can show that the \textit{perfect} ES fairness can still be attained under certain conditions.
Supplementary Material: pdf
Code Of Conduct: I certify that all co-authors of this work have read and commit to adhering to the NeurIPS Statement on Ethics, Fairness, Inclusivity, and Code of Conduct.
Code: zip
19 Replies

Loading